242 research outputs found

    Micro-dynamics of ice

    Get PDF
    No abstract available

    Zebra pattern in rocks as a function of grain growth affected by second-phase particles

    Get PDF
    Alternating fine grained dark and coarse grained light layers in rocks are often termed zebra patterns and are found worldwide. The crystals in the different bands have an almost identical chemical composition, however second-phase particles (e.g., fluid filled pores or a second mineral phase) are concentrated in the dark layers. Even though this pattern is very common and has been studied widely, the initial stage of the pattern formation remains controversial. In this communication we present a simple microdynamic model which can explain the beginning of the zebra pattern formation. The two dimensional model consists of two main processes, mineral replacement along a reaction front, and grain boundary migration affected by impurities. In the numerical model we assume that an initial distribution of second-phase particles is present due to sedimentary layering. The reaction front percolates the model and redistributes second-phase particles by shifting them until the front is saturated and drops the particles again. This produces and enhances initial layering. Grain growth is hindered in layers with high second-phase particle concentrations whereas layers with low concentrations coarsen. Due to the grain growth activity in layers with low second-phase particle concentrations these impurities are collected at grain boundaries and the crystals become very clean. Therefore, the white layers in the pattern contain large grains with low concentration of second-phase particles, whereas the dark layers contain small grains with a large second-phase particle concentration. The presence of the zebra pattern is characteristic for regions containing Pb-Zn mineralization. Therefore, the origin of the structure is presumably related to the mineralization process and might be used as a marker for ore exploration. A complete understanding of the formation of this pattern will contribute to a more accurate understanding of hydrothermal systems that build up economic mineralization

    Asymmetric continental deformation during South Atlantic rifting along southern Brazil and Namibia

    Get PDF
    Plate restoration of South America and Africa to their pre-breakup position faces the problem of gaps and overlaps between the continents, an issue commonly solved with implementing intra-plate deformation zones within South America. One of these zones is often positioned at the latitude of SE/S Brazil. However, geological evidence for the existence of a distinct zone in this region is lacking, which is why it remains controversial and is not included in all modeling studies. In order to solve this problem we present a study of multiple geological aspects of both parts of the margin, SE/S Brazil and its conjugate part NW Namibia at the time of continental breakup. Our study highlights pronounced differences between these regions with respect to Paraná-Etendeka lava distribution, magmatic dyke emplacement, basement reactivation, and fault patterns. In Namibia, faults and dykes reactivated the rift-parallel Neoproterozoic basement structure, whereas such reactivation was scarce in SE/S Brazil. Instead, most dykes, accompanied by small-scale grabens, are oriented margin-perpendicular along the margin from northern Uruguay to São Paulo. We propose that these differences are rooted in large-scale plate movement and suggest a clockwise rotation of southern South America away from a stable northern South America and Africa, in a similar way as proposed by others for a Patagonian continental section just prior to South Atlantic rifting. This rotation would produce margin-parallel extension in SE/S Brazil forming margin-perpendicular pathways for lava extrusion and leading to the asymmetric distribution of the Paraná-Etendeka lavas. NW Namibia instead remained relatively stable and was only influenced by extension due to rifting, hot spot activity, and mantle upwelling. Our study argues for significant margin-parallel extension in SE/S Brazil, however not confined to a single distinct deformation zone, but distributed across ~ 1000 km along the margin

    Dynamic development of hydrofracture

    Get PDF
    Many natural examples of complex joint and vein networks in layered sedimentary rocks are hydrofractures that form by a combination of pore fluid overpressure and tectonic stresses. In this paper, a two-dimensional hybrid hydro-mechanical formulation is proposed to model the dynamic development of natural hydrofractures. The numerical scheme combines a discrete element model (DEM) framework that represents a porous solid medium with a supplementary Darcy based pore-pressure diffusion as continuum description for the fluid. This combination yields a porosity controlled coupling between an evolving fracture network and the associated hydraulic field. The model is tested on some basic cases of hydro-driven fracturing commonly found in nature, e.g., fracturing due to local fluid overpressure in rocks subjected to hydrostatic and nonhydrostatic tectonic loadings. In our models we find that seepage forces created by hydraulic pressure gradients together with poroelastic feedback upon discrete fracturing play a significant role in subsurface rock deformation. These forces manipulate the growth and geometry of hydrofractures in addition to tectonic stresses and the mechanical properties of the porous rocks. Our results show characteristic failure patterns that reflect different tectonic and lithological conditions and are qualitatively consistent with existing analogue and numerical studies as well as field observations. The applied scheme is numerically efficient, can be applied at various scales and is computational cost effective with the least involvement of sophisticated mathematical computation of hydrodynamic flow between the solid grains

    Influence of viscosity on growth of high pressure phases in computer experiments

    Get PDF
    The general aim of the project is the examination of microstructures that develop under HP conditions in computer experiments. Starting point is an interest in the dynamics of HP phase transitions, as for instance the probably catastrophic phase-change event of olivine to spinel in the upper mantle. This is either explained by large overpressure or failure during the development of micro-structures during the growth of the spinel phase. Experimental results on this subject are rare, and do not lead by themselves to a deeper insight into the complicated stress/strain/volumechange/ micro-crack relationships of the transition. We developed a central force spring model, where particles can undergo a phase change using parameters of olivine and spinel. The algorithm is capable of simulating the local growth of the mentioned phases on the basis of direction-dependant rate laws. In the current context newtonian viscosity is added to the previously solely elastic system, since under HP/HT conditions the viscous flow within the material will have a large influence on the distribution of elastic energies, which in turn have an important influence on the driving force of the transition. Thus we are dealing with a visco-elastic system, which will be subjected to timedependant strain.conferenc

    Contrasting stress fields on correlating margins of the South Atlantic

    Get PDF
    The “passiveness” of passive continental margins across the globe is currently under debate since several studies have shown that these margins may experience a variety of stress states and undergo significant vertical movement post-breakup. Of special interest is the South Atlantic, because the bounding continents have very different recent geological histories, with Africa experiencing continental rifting whereas South America is influenced by subduction on the Pacific side. It is not clear to what extent the Atlantic continental margins are subject to the same stresses and vertical motions as the main continents. To address this problem, we performed a paleostress analysis of two originally adjacent areas, i.e. NW Namibia and SE/S Brazil. Both areas are covered by the ~ 133-Ma-old Paraná-Etendeka extrusives that were emplaced shortly before or during the onset of the Atlantic rifting. Thus, the volcanics serve as a time marker for syn- or post-rift deformation. Collected fault slip data in the volcanics reveal remarkable differences between the two correlating areas. NW Namibia was dominated by extension in ENE-WSW and SW-NE directions, and by minor strike-slip movement with NW-SE directed compression. SE/S Brazil was mostly affected by strike-slip faulting, with compression oriented E-W and SW-NE. Similar fault systems appear widespread across SE Brazil and may be the combined result of flexural margin bending and the Nazca plate subduction. The results of NW Namibia differ from known compressional stress tensors in western South Africa, post-dating 90 Ma. The south-western African continental margin may thus have experienced a spatially variable stress history. Our results show that the tectonic evolution of the continental margins of the South Atlantic is not passive and that both margins vary significantly in structural style and stress fields, indicating that variable plate boundary forces play a major role in margin evolution

    Improved Minimum Error Rate Training in Moses

    Get PDF
    We describe an open-source software for minimum error rate training (MERT) for statistical machine translation (SMT). This was implemented within the Moses toolkit, although it is essentially standsalone, with the aim of replacing the existing implementation with a cleaner, more flexible design, in order to facilitate further research in weight optimisation. A description of the design is given, as well as experiments to compare performance with the previous implementation and to demonstrate extensibility

    Deformation and fluid flow in the Huab Basin and Etendeka Plateau, NW Namibia

    Get PDF
    The Lower Cretaceous Twyfelfontein sandstone formation in the Huab Basin in NW Namibia shows the effects of volcanic activity on a potential reservoir rock. The formation was covered by the Paraná-Etendeka Large Igneous Province shortly before or during the onset of South-Atlantic rifting. Deformation bands found in the sandstone trend mostly parallel to the continental passive margin and must have formed during the extrusion of the overlying volcanic rocks, indicating that their formation is related to South-Atlantic rifting. 2D-image porosity analysis of deformation bands reveals significant porosity reduction from host rock to band of up to 70 %. Cementation of the sandstone, linked to advective hydrothermal flow during volcanic activity, contributes an equal amount to porosity reduction from host rock to band when compared to initial grain crushing. Veins within the basaltic cover provide evidence for hot fluid percolation, indicated by spallation of wall rock and colloform quartz growth, and for a later low-temperature fluid circulation at low pressures indicated by stilbite growth sealing cavities. Sandstone samples and veins in the overlying volcanic rocks show that diagenesis of the Twyfelfontein sandstone is linked to Atlantic rifting and was affected by both hydrothermal and low-thermal fluid circulation

    Fingerprinting stress: stylolite and calcite twinning paleopiezometry revealing the complexity of progressive stress patterns during folding-the case of the Monte Nero anticline in the Apennines, Italy

    Get PDF
    In this study we show for the first time how quantitative stress estimates can be derived by combining calcite twinning and stylolite roughness stress fingerprinting techniques in a fold-and-thrust belt. First, we present a new method that gives access to stress inversion using tectonic stylolites without access to the stylolite surface and compare results with calcite twin inversion. Second, we use our new approach to present a high-resolution deformation and stress history that affected Meso-Cenozoic limestone strata in the Monte Nero Anticline during its late Miocene-Pliocene growth in the Umbria-Marche Arcuate Ridge (northern Apennines, Italy). In this area an extensive stylolite-joint/vein network developed during layer-parallel shortening (LPS), as well as during and after folding. Stress fingerprinting illustrates how stress in the sedimentary strata did build up prior to folding during LPS. The stress regime oscillated between strike slip and compressional during LPS before ultimately becoming strike slip again during late stage fold tightening. Our case study shows that high-resolution stress fingerprinting is possible and that this novel method can be used to unravel temporal relationships that relate to local variations of regional orogenic stresses. Beyond regional implications, this study validates our approach as a new powerful toolbox to high-resolution stress fingerprinting in basins and orogens combining joint and vein analysis with sedimentary and tectonic stylolite and calcite twin inversion techniques

    A new stylolite classification scheme to estimate compaction and local permeability variations

    Get PDF
    This study was carried out within the framework of DGMK (German Society for Petroleum and Coal Science and Technology) research project 718 “Mineral Vein Dynamics Modeling”, which is funded by the companies ExxonMobil Production Deutschland GmbH, GDF SUEZ E&P Deutschland GmbH, DEA Deutsche Erdoel AG and Wintershall Holding GmbH, within the basic research program of the WEG Wirtschaftsverband Erdoel- und Erdgasgewinnung e.V. We thank the companies for their financial support and their permission to publish these results. This work has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 31688. The Zechstein data were collected with the help of Simon Gast. We thank Jean-Pierre Gratier and an anonymous reviewer for their comments that improved an earlier version of the manuscript.Peer reviewedPostprin
    corecore